EconPapers    
Economics at your fingertips  
 

A power loss model for Archimedes screw generators

Andrew Kozyn and William David Lubitz

Renewable Energy, 2017, vol. 108, issue C, 260-273

Abstract: This paper presents a complete power loss model for an Archimedes screw used for power generation (ASG) including a non-dimensional model to predict power losses due to outlet submersion flooding. This model amends a prior idealized, frictionless ASG performance model to include power losses due to bearing friction, outlet exit effects, internal hydraulic friction and outlet submersion. This study presents data and a derived relationship for power losses due to outlet submergence and found that unmodified Manning’s coefficients can be used to model internal fluid friction losses. Laboratory experiments on a scale-model ASG were conducted to determine variable relationships and validate power loss models. The performance of a 7 kW grid-connected ASG was measured and used to validate model predictions. The proposed ASG power loss model improves the prior frictionless power model significantly and was generally capable of predicting the power output of a real-world ASG.

Keywords: Archimedes screw generator; Power model; Power losses; Efficiency; Microhydro generation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117301489
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:108:y:2017:i:c:p:260-273

DOI: 10.1016/j.renene.2017.02.062

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:108:y:2017:i:c:p:260-273