Integration of dye-sensitized solar cells (DSC) on photobioreactors for improved photoconversion efficiency in microalgal cultivation
Elena Barbera,
Eleonora Sforza,
Andrea Guidobaldi,
Aldo Di Carlo and
Alberto Bertucco
Renewable Energy, 2017, vol. 109, issue C, 13-21
Abstract:
Outdoor industrial-scale microalgae cultivation is limited by several factors, among which a low efficiency of overall light energy conversion plays a key role, mainly due to photosaturation and photoinhibition under high irradiations. This work aims at improving the overall photoconversion efficiency in a microalgal production photobioreactor (PBRs), by exploiting an advanced photovoltaic (PV) technology. A semi-transparent dye sensitized solar cells module (DSC) is placed on the irradiated surface, thus absorbing part of the incident light to produce electricity, while transmitted photons are used by algal cells for photosynthesis. Experiments are carried out in a continuous laboratory scale flat-panel PBR, at different constant light intensities and under a day-night irradiation regime, to ascertain the performances of this combined PV-PBR system in terms of biomass productivity and overall photoconversion efficiency, compared to traditional transparent PBRs. The results obtained show that the configuration proposed, combining biomass production with innovative photovoltaics technology, could be a valuable way to improve light energy utilization and efficiency in microalgal production.
Keywords: Scenedesmus obliquus; Continuous photobioreactor; Photovoltaics; Photoinhibition; Light spectrum; Dye solar cell (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117301945
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:109:y:2017:i:c:p:13-21
DOI: 10.1016/j.renene.2017.03.013
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().