EconPapers    
Economics at your fingertips  
 

Identification of optimum Calophyllum inophyllum bio-fuel blend in diesel engine using advanced vibration analysis technique

Zhi Chao Ong, Mohd Bakar Mohd Mishani, Wen Tong Chong, Roon Sheng Soon, Hwai Chyuan Ong and Zubaidah Ismail

Renewable Energy, 2017, vol. 109, issue C, 295-304

Abstract: Bio-fuel causes less pollution to the environment as compared with diesel fuel. However, sound and vibration resulting from the combustion in bio-fuel-powered engines adversely affect users. In this study, non-edible bio-fuel, i.e., Calophyllum inophyllum, and its blends were investigated for their performance as alternative fuel and were compared by using vibration as the engine parameter. Previous studies used overall engine vibration to determine the optimum bio-fuel blends with minimal vibration. Overall vibration could consist of vibration components due to combustion as well as other external vibration sources. This condition limits its effectiveness in identifying an optimum fuel blend mainly due to vibration caused by combustion effect. Advanced vibration analysis technique, which consists of time-domain, frequency-domain, and motion visualization analyses (i.e., operating deflection shape analysis), is first performed to isolate the effect of external vibration source due to torque from the overall vibration. Bio-fuel-powered engines at full speed and with the lowest engine torque are more suitable for the identification of an optimum fuel blend with minimal engine vibration. Bio-fuel blend B20 has the least vibration in overall root mean square acceleration at full speed compared with pure diesel and other bio-fuel blends.

Keywords: Bio-fuel; Calophyllum inophyllum; Condition-based monitoring; Diesel engine; Operating deflection shape; Phase (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117302318
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:109:y:2017:i:c:p:295-304

DOI: 10.1016/j.renene.2017.03.039

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:109:y:2017:i:c:p:295-304