Hour-ahead wind power forecast based on random forests
A. Lahouar and
J. Ben Hadj Slama
Renewable Energy, 2017, vol. 109, issue C, 529-541
Abstract:
Due to its chaotic nature, the wind behavior is difficult to forecast. Predicting wind power is a real challenge for dispatchers who need to estimate renewable generation in advance to establish their strategies. To achieve an accurate wind power prediction, it is important to determine first which meteorological data need to be included in the predictor. For that purpose, this paper focuses on choosing the appropriate weather factors, namely spatially averaged wind speed and wind direction. These factors are selected according to correlation and importance measures. Then, the random forest method is proposed to build an hour-ahead wind power predictor. The random forest does not need to be tuned or optimized, contrary to most other learning machines. Both point and probabilistic forecasts are performed using the same inputs. The emphasis is put on the effect of wind speed and direction on the model performance, and the immunity of random forest to irrelevant inputs. The wind data used to test the proposed model are taken from Sidi Daoud wind farm in Tunisia. Results show an interesting improvement of forecast accuracy using the proposed model, as well as an important reduction of the different error criteria compared to classical neural network prediction.
Keywords: Random forest; Wind power forecast; Hour-ahead; Spatially averaged wind speed; Wind direction; Importance of inputs (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (60)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117302550
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:109:y:2017:i:c:p:529-541
DOI: 10.1016/j.renene.2017.03.064
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().