Biocrude production via supercritical hydrothermal co-liquefaction of spent mushroom compost and aspen wood sawdust
Lukas Jasiūnas,
Thomas H. Pedersen,
Saqib S. Toor and
Lasse A. Rosendahl
Renewable Energy, 2017, vol. 111, issue C, 392-398
Abstract:
The work investigates a new potential feedstock source for hydrothermal liquefaction (HTL) driven biocrude production. Specifically, the focus is set on utilizing spent mushroom compost (SMC), the primary waste by-product from mushroom farming. It is considered as a feedstock for HTL conversion due to its organic nature (e.g. straw, horse manure and sphagnum) and ample availability with an annual production of over 17 million metric tonnes, globally. Locally acquired samples were analysed and converted hydrothermally. A biocrude yield of 48% on dry ash-free (DAF) basis was obtained but it was accompanied by a solid fraction (organics and inorganics) of 50% on dry basis, considered to be critically high in a continuous HTL context. Acid leaching (citric acid) of the SMC and co-liquefaction (with aspen wood (AW)) were investigated as means to decrease the solid fraction. Whereas the SMC leaching showed to be ineffective, co-liquefaction showed potential. The solid fraction could be reduced to half (24.5%) by mixing SMC:AW in a 1:3 mass ratio.
Keywords: Thermochemical conversion; Agricultural residue; Biofuel; Waste utilization; Demineralisation; Biomass (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117303300
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:111:y:2017:i:c:p:392-398
DOI: 10.1016/j.renene.2017.04.019
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().