Robust estimation of wind power ramp events with reservoir computing
M. Dorado-Moreno,
L. Cornejo-Bueno,
P.A. Gutiérrez,
L. Prieto,
C. Hervás-Martínez and
S. Salcedo-Sanz
Renewable Energy, 2017, vol. 111, issue C, 428-437
Abstract:
Wind power ramp events are sudden increases or decreases of wind speed within a short period of time. Their prediction is nowadays one of the most important research trends in wind energy production because they can potentially damage wind turbines, causing an increase in wind farms management costs. In this paper, 6-h and 24-h binary (ramp/non-ramp) prediction based on reservoir computing methodology is proposed. This forecasting may be used to avoid damages in the turbines. Reservoir computing models are used because they are able to exploit the temporal structure of data. We focus on echo state networks, which are one of the most successfully applied reservoir computing models. The variables considered include past values of the ramp function and a set of meteorological variables, obtained from reanalysis data. Simulations of the system are performed in data from three wind farms located in Spain. The results show that our algorithm proposal is able to correctly predict about 60% of ramp events in both 6-h and 24-h prediction cases and 75% of the non-ramp events in the next 24-h case. These results are compared against state of the art models, obtaining in all cases significant improvements in favour of the proposed algorithm.
Keywords: Wind power ramp events prediction; Recurrent neural networks; Reservoir computing; Echo state networks; Reanalysis data; Time series (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117303257
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:111:y:2017:i:c:p:428-437
DOI: 10.1016/j.renene.2017.04.016
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().