High-efficiency solar power towers using particle suspensions as heat carrier in the receiver and in the thermal energy storage
Huili Zhang,
Hadrien Benoit,
Inmaculada Perez-Lopèz,
Gilles Flamant,
Tianwei Tan and
Jan Baeyens
Renewable Energy, 2017, vol. 111, issue C, 438-446
Abstract:
Solar thermal electricity generated by concentrated solar power (CSP) plants is increasingly implemented. CSP plants can supply electricity on a fully matched supply-demand basis if equipped with a thermal energy storage. To increase the efficiency and reduce both capital and operating costs, a next generation of CSP concepts is required. Particle suspensions can be applied to meet these targets and can be used throughout the CSP conversion process, as high temperature heat transfer medium in the receiver, for heat storage, and in the power block of the plant. This work presents the novel concept of using particle suspensions as heat carriers, mostly further to initial testing at the CNRS 1 MW solar furnace of Odeillo Font-Romeu (F). Values of the heat transfer coefficient up to 1100 W/m2K (bare tubes) and 2200 W/m2K (finned tubes) were obtained for operation at low superficial gas velocities of 0.04–0.19 m/s, thus limiting heat losses by the exhaust air. Despite additional costs for particle handling and for an appropriate boiler, the required overall investment and operating costs are expected to be significantly lower than for common equivalent molten salt CSPs, leading to a reduction in Levelized Cost of Electricity (LCOE) from approximately 125 €/MWh to below 100 €/MWh.
Keywords: Concentrated solar power; Particulate heat carrier; High efficiency thermal cycle; On-sun proof testing; LCOE (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117302847
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:111:y:2017:i:c:p:438-446
DOI: 10.1016/j.renene.2017.03.101
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().