Numerical analysis of candidate materials for multi-stage metal hydride hydrogen compression processes
Evangelos I. Gkanas and
Martin Khzouz
Renewable Energy, 2017, vol. 111, issue C, 484-493
Abstract:
A numerical study on multistage metal hydride hydrogen compression (MHHC) systems is presented and analyzed. Multistage MHHC systems use a combination of different materials to increase the final compression ratio at the end of the compression process. In the current work a numerical model is proposed to describe the operation of a complete three-stage MHHC cycle, which can be divided in seven steps (for a three-stage compression system): first stage hydrogenation process, sensible heating of first stage, coupling process between the first and the second stage, sensible heating of the second stage, second coupling with the upcoming sensible heating of the third stage material and finally the delivery of high pressure hydrogen to a high pressure hydrogen tank. Three scenarios concerning the combination of different materials for the compression stages are introduced and analyzed in terms of maximum compression ratio, cycle time and energy consumption. According to the results, the combination of LaNi5 (stage 1), MmNi4.6Al0.4 (stage 2) and a novel synthesized AB2-Laves phase intermetallic (stage 3) present a compression ratio 22:1 while operating between 20 and 130 °C.
Keywords: Metal hydride hydrogen compressor; Heat and mass transfer; Hydrogenation/dehydrogenation; Metal hydrides (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117303440
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:111:y:2017:i:c:p:484-493
DOI: 10.1016/j.renene.2017.04.037
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().