Dynamic wake development of a floating wind turbine in free pitch motion subjected to turbulent inflow generated with an active grid
Stanislav Rockel,
Joachim Peinke,
Michael Hölling and
Raúl Bayoán Cal
Renewable Energy, 2017, vol. 112, issue C, 1-16
Abstract:
Development of wake turbulence of a floating wind turbine model under low and high turbulence inflow was investigated in comparison to the wake of a bottom fixed turbine. In wind tunnel experiments, two inflow conditions were generated using an active grid and the wakes of the model wind turbines were measured using a rake of 16 hot-wires, at downstream positions from one to seven rotor diameters. The flow was analyzed using statistical, spectral and spatial analysis. Under low turbulence inflow, the turbine type has highest impact on the wake, where structures created at the blade tips define substantially characteristics of the wake. Formation of a correlated tip and root vortices, that is found for the fixed turbine, is inhibited by the floating turbine. Under high turbulence inflow, the turbine type plays a subordinated role. Tip vortices are destabilized by large structures created with the active grid, that persist in the wake. Further analysis using proper orthogonal decomposition reveals more complex pattern under high turbulent inflow, that contain high percentage of turbulent kinetic energy, when compared to the low turbulent inflow, where the wake is composed by local point-wise contributions to the turbulent kinetic energy.
Keywords: Turbulent flow; Active grid; Wake; Floating offshore wind turbine; Wind tunnel experiment; Proper orthogonal decomposition (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117304019
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:112:y:2017:i:c:p:1-16
DOI: 10.1016/j.renene.2017.05.016
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().