Life-cycle savings for a flat-plate solar water collector plant in Chile
R. Araya,
F. Bustos,
J. Contreras and
A. Fuentes
Renewable Energy, 2017, vol. 112, issue C, 365-377
Abstract:
In Chile, flate-plate solar water collector (FPSWC) plants have not yet been sufficiently developed despite the excellent solar conditions of the country's territory. Two of the main parameters affecting the behavior of these plants are the collection area and the water storage volume. In this paper, an energy performance model of an FPSWC plant is used along with genetic algorithms (GAs) to optimize the combination of these two parameters in order to produce the maximum life-cycle savings (LCS). This model is applied to 182 locations in Chile and 6 consumption profiles with the purpose of creating a solar map for this kind of plant throughout the country. The financial results show that the installation of an optimized FPSWC plant is convenient in all the analyzed locations. Furthermore, results are noteworthy in the northern zone of Chile with respect to the others due to excellent meteorological conditions. A sensitivity analysis was carried out at the locations with higher and lower LCS, showing that consumption temperature mainly affects zones with higher radiation. This study allows us to provide evidence that the utilization of FPSWC plants should be promoted in order to induce rapid growth and development of this important technology in Chile.
Keywords: Flat-plate solar water collector; Solar potential; Genetic algorithm; Life cycle savings (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117304214
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:112:y:2017:i:c:p:365-377
DOI: 10.1016/j.renene.2017.05.036
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().