Land utilization performance of ground mounted photovoltaic power plants: A case study
Swapna Roy and
Biswajit Ghosh
Renewable Energy, 2017, vol. 114, issue PB, 1238-1246
Abstract:
Long term studies were conducted on land utilization performances of six (three 25 MWp and three 5 MWp) ground mounted photovoltaic power plants are operating in salt marshy land in western India. The PV modules in the present studies are made up with multi-crystalline silicon (mc-Si), amorphous silicon (a-Si) and cadmium telluride (CdTe) and these are the parts of a 500 MWp solar park. Studies indicated that the salty marsh land surfaces under the shadow of the PV modules were changed by enhancing its humidity and temperature level. This enhancement improved the flora formation in the humid soil possibly due to the flow of leakage current from PV module surface and land is used for agricultural activities. The combination of electrical and agricultural products reduced payback period of total investment and this makes the dual use of land in developing energy and food security. Results showed that the small capacity of mc-Si PV plant has the better electrical yield than that of its larger counterpart and the agricultural yield under a-Si and CdTe plants is better than mc-Si plants.
Keywords: Ground mounted PV power plant; Dual use of land; Energy and food security (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117307449
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:114:y:2017:i:pb:p:1238-1246
DOI: 10.1016/j.renene.2017.07.116
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().