Controller design for doubly fed induction generator using particle swarm optimization technique
Om Prakash Bharti,
R.K. Saket and
S.K. Nagar
Renewable Energy, 2017, vol. 114, issue PB, 1394-1406
Abstract:
This manuscript describes the controller design for doubly fed induction generator (DFIG) driven by a variable speed wind turbine using particle swarm optimization technique. The mathematical model of the DFIG, its power converters, and their controllers have illustrated in this paper appropriately. The lower order simple illustration of DFIG have been used for PID controller design using numerical differentiation of Simulink model. The controller design for DFIG based WECS using PSO technique and its fitness functions are described in detail. The responses of the DFIG system regarding terminal voltage, current, active-reactive power and DC-Link voltage along with generator speed have slightly improved with PSO based controller. Finally, the obtained output is equated with a standard technique for performance improvement of the DFIG based wind energy conversion system.
Keywords: Wind turbine; DFIG; PID controller; Matlab Simulink Models; PSO technique; Fitness function (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117305669
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:114:y:2017:i:pb:p:1394-1406
DOI: 10.1016/j.renene.2017.06.061
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().