EconPapers    
Economics at your fingertips  
 

A hybrid approach based on the Gaussian process with t-observation model for short-term wind speed forecasts

Jianming Hu, Jianzhou Wang and Liqun Xiao

Renewable Energy, 2017, vol. 114, issue PB, 670-685

Abstract: Accurate wind speed prediction is a significant factor in improving and optimizing wind power production. Particularly, reliable short-term wind speed forecasting contributes to the real-time optimization of wind farm operation. However, this short-term forecasting task remains challenging due to the strong stochastic nature and dynamic uncertainty of wind speed. This paper proposes a hybrid model that consists of the Empirical Wavelet Transform (EWT), Expectation Propagation (EP) algorithm and Gaussian process regression with the Student-t Observation Model (GPR-t) for short-term wind speed forecasting. The proposed approach firstly extracts meaningful information from a short-term wind speed series and subsequently models the inherent uncertainty and the dynamic features of the wind speed time-series. Additionally, the wind speed series presents a time-varying characteristic. Thus, this study adopts a moving window approach in the prediction processes, thereby permitting the proposed model to respond quickly to the dynamic characteristic of wind speed. To examine the forecasting performance of the suggested hybrid model, the validation of the proposed model is performed against several other existing models with half-hour and hourly wind speed data obtained from a windmill farm located in northwestern China. The computational results demonstrate that the proposed hybrid approach generates satisfactory point predictive accuracy and interval forecasting performance.

Keywords: Gaussian process regression with the Student-t observation model; Expectation propagation (EP) algorithm; Wind speed forecasting (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117304974
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:114:y:2017:i:pb:p:670-685

DOI: 10.1016/j.renene.2017.05.093

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:670-685