Experimental study on scour profile of pile-supported horizontal axis tidal current turbine
Long Chen,
Roslan Hashim,
Faridah Othman and
Shervin Motamedi
Renewable Energy, 2017, vol. 114, issue PB, 744-754
Abstract:
The study aims to investigate the influence of tip clearance on the scour rate of pile-supported horizontal axis tidal current turbine (TCT) and also attempts to correlate time-dependent scour depth of TCT with the tip clearance. A physical model of TCT was placed in a flume for scour test and the scour rate of the fabricated model was investigated. The results suggest that the decrease in tip clearance increases the scour depth. In addition, the shortest tip clearance results in the fastest and most sediment transport. The maximum scour depth reached 18.5% of rotor diameter. Results indicate that regions susceptible to scour typically persist up to 1.0Dt downstream and up to 0.5Dt to either side of the turbine support centre. The majority of the scour occurred in the first 3.5 h. The maximum scour depth reaches equilibrium after 24 h test. An empirical formula to predict the time-dependent scour depth of pile-supported TCT is proposed.
Keywords: Tidal energy; Tidal-current turbine; Wake; Scour (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117306389
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:114:y:2017:i:pb:p:744-754
DOI: 10.1016/j.renene.2017.07.026
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().