Effects of aeroelastic tailoring on performance characteristics of wind turbine systems
Samuel Scott,
Marco Capuzzi,
David Langston,
Ervin Bossanyi,
Graeme McCann,
Paul M. Weaver and
Alberto Pirrera
Renewable Energy, 2017, vol. 114, issue PB, 887-903
Abstract:
Some interesting challenges arise from the drive to build larger, more durable wind turbine rotors. The rationale is that, with current designs, the power generated is theoretically proportional to the square of the blade length, however, theoretical mass increases cubically. Aeroelastic tailoring aims to improve the ratio between increased power capture and mass by offering enhanced combined energy capture and system durability. As such, the design and full system analysis of two adaptive, aeroelastically tailored wind turbine blades is considered herein. One makes use of material bend-twist coupling, whilst the other combines both material and geometric bend-twist coupling. Each structural design meets a predefined coupling distribution, that approximately matches the stiffness of a baseline blade.
Keywords: Aeroelastic tailoring; Variable stiffness; Wind turbine blade; Load alleviation; Composites; Bend-twist coupling (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117305530
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:114:y:2017:i:pb:p:887-903
DOI: 10.1016/j.renene.2017.06.048
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().