Effective harvesting of UV induced production of excitons from Fe3O4 with proficient rGO-PTh acting as BI-functional redox photocatalyst
Rajendran Kalyani and
Karuppasamy Gurunathan
Renewable Energy, 2018, vol. 115, issue C, 1035-1042
Abstract:
We report the synthesis of PTh-rGO-Fe3O4 nanocomposite from a simple combination of graphene and polythiophene (PTh) with metal oxide for application as photocatalyst. The structure and morphology of the nanocomposite were studied by powder XRD, FTIR spectroscopy, Raman analysis, EDAX and TEM. The observed properties of the nanocomposite were fineset for the application in the field of photocatalyst. The photocatalytic effect was studied by utilizing the nanocomposite in water splitting for hydrogen production, degradation of Malachite green and shielding of Rose Bengal from UV degradation. The maximum quantum efficiency for hydrogen production obtained with 0.1% w/v of PTh-rGO-Fe3O4 photocatalyst was 11.48% with a hydrogen production rate of 178.4 μmol/h. Furthermore, the photocatalyst shows 87.9% degradation of Malachite green and acts as an effective UV shielding layer preventing 53.09% degradation of Rose Bengal. This study reveals that our nanocomposite will be a better photocatalytic material.
Keywords: Nanocomposite; Water splitting; Dye degradation; Reduced graphene oxide; Fe3O4; Polythiophene (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117308935
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:115:y:2018:i:c:p:1035-1042
DOI: 10.1016/j.renene.2017.09.031
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().