EconPapers    
Economics at your fingertips  
 

Decomposition based multi-objective evolutionary algorithm for windfarm layout optimization

Partha P. Biswas, P.N. Suganthan and Gehan A.J. Amaratunga

Renewable Energy, 2018, vol. 115, issue C, 326-337

Abstract: An efficient windfarm layout to harness maximum power out of the wind is highly desirable from technical and commercial perspectives. A bit of flexibility on layout gives leeway to the designer of windfarm in planning facilities for erection, installation and future maintenance. This paper proposes an approach where several options of optimized usable windfarm layouts can be obtained in a single run of decomposition based multi-objective evolutionary algorithm (MOEA/D). A set of Pareto optimal vectors is obtained with objective as maximum output power at minimum wake loss i.e. at maximum efficiency. Maximization of both output power and windfarm efficiency are set as two objectives for optimization. The objectives thus formulated ensure that in any single Pareto optimal solution the number of turbines used are placed at most optimum locations in the windfarm to extract maximum power available in the wind. Case studies with actual manufacturer data for wind turbines of same as well as different hub heights and with realistic wind data are performed under the scope of this research study.

Keywords: Wind turbine data; Windfarm turbine placement; Power output; Efficiency; Multi-objective evolutionary algorithm; Hub heights (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117307991
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:115:y:2018:i:c:p:326-337

DOI: 10.1016/j.renene.2017.08.041

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:326-337