EconPapers    
Economics at your fingertips  
 

An improved-accuracy method for fatigue load analysis of wind turbine gearbox based on SCADA

Eduardo J. Alvarez and Adrijan P. Ribaric

Renewable Energy, 2018, vol. 115, issue C, 391-399

Abstract: In spite of their increasing popularity, managing the use of wind turbines has been exceptionally challenging. Through computational prognostics, Sentient Science determined that current operating lifetime for a large number of turbines is only between five to thirteen years. Initial estimates indicate that savings of $150,000 per turbine per gearbox replacement can be achieved using physics-based long-term prognostics, leading to a substantial return of investment for wind farm operators. However, long-term prognostics require a precise determination of the loads in all six degrees of freedom occurred on the drive-train. One of these loads—torque—can be directly estimated in situ from the historical data provided by the Supervisory Control and Data Acquisition (SCADA) system. In many cases, the historical data only provides 10-min statistical values, and a common practice of reliability analysts is the calculation of torque using only 10-min averages. Disregarding the load fluctuation within 10-min intervals of recorded SCADA introduces a loss of accuracy in the resulting torque histogram that is indeed meaningful for an accurate life prognostic. This paper introduces a novel improved-accuracy method for calculation of torque histograms based on SCADA. Using 10-min distributions of power output and rotor speed, this method is able to successfully reconstruct the distribution of instantaneous torque in between 10-min intervals of recorded SCADA. The method predicts a high-torque region more dispersed that the current method used in the industry, which introduces substantially different results when used in life prognostics. Using this method in the lifing of a GE 1.5 SLE wind turbine, it is shown that the error in predicted L50 is reduced by 10.1%.

Keywords: Wind turbine; Gearbox failure; Load duration distribution; Torque; SCADA; Physics-based prognostic (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117307851
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:115:y:2018:i:c:p:391-399

DOI: 10.1016/j.renene.2017.08.040

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:391-399