Wind energy harnessing of the NREL 5 MW reference wind turbine in icing conditions under different operational strategies
Alessandro Zanon,
Michele De Gennaro and
Helmut Kühnelt
Renewable Energy, 2018, vol. 115, issue C, 760-772
Abstract:
Icing is a strong limitation for the performance of wind turbines in cold climates and the prediction of the performance loss due to ice accretion is essential for designing effective ice mitigation measures. This paper presents a numerical approach capable of simulating the ice accretion transient phenomenon and its effects on wind turbine performance. This approach is applied to the NREL 5 MW reference wind turbine to predict (i) its performance during and after an icing event lasting for 8 h and (ii) the potential improvement in energy harnessing due to different operational strategies. The results show that by decreasing the turbine rotational speed and accepting a slight energy conversion decrease during the icing event, the performance can improve up to 6% when full operation is restored compared to the baseline operational strategy. Whereas, sustaining the rotational speed during the icing event can generate a 3% of performance loss afterwards compared to the same baseline. The developed workflow can be used for optimising performance of wind turbines by accounting for environmental conditions, the duration of the icing event, and performance after the icing event itself, thus constituting a valuable tool to maximise profitability of wind turbines in cold climates.
Keywords: NREL wind turbine; Transient ice accretion; Operational strategies; Numerical simulation; Icing simulation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117308376
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:115:y:2018:i:c:p:760-772
DOI: 10.1016/j.renene.2017.08.076
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().