On the multi-scale interactions between an offshore-wind-turbine wake and the ocean-sediment dynamics in an idealized framework – A numerical investigation
T. Nagel,
J. Chauchat,
A. Wirth and
C. Bonamy
Renewable Energy, 2018, vol. 115, issue C, 783-796
Abstract:
We investigate the turbulent dynamics of the coupled atmosphere-ocean-sediment system around a wind turbine. To this end, a coupled two-dimensional idealized numerical model of the ocean and sediment layers, forced by an idealized offshore wind turbine wake is used. The turbine wake impacts the ocean surface and for strong wind and water layer thickness higher than 20 m, large scale eddies of the size comparable to the wake thickness are generated, leading to a turbulent dynamics in the ocean. The turbulence in the ocean is controlled by the shallow wake parameter S.
Keywords: Offshore-wind-turbine; Wake; Sea-sediment interactions; Ocean dynamics; Seabed dynamics (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811730839X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:115:y:2018:i:c:p:783-796
DOI: 10.1016/j.renene.2017.08.078
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().