EconPapers    
Economics at your fingertips  
 

Improving energy efficiency and developing an air-cooled grate for the downdraft rice husk furnace

Nguyen Van Hung, Reianne Quilloy and Martin Gummert

Renewable Energy, 2018, vol. 115, issue C, 969-977

Abstract: Paddy drying plays an important role in reducing postharvest losses in rice. This process usually involves using a dryer that requires either fossil fuels or renewable energy to heat the drying air, which removes water from the paddy. This research looked into developing a downdraft rice husk furnace used for paddy drying that resulted in an improved air-cooled grate with optimal operation. This optimal operation was used to generate sufficient heat to increase the drying air temperature by 10–15 °C at an air flow rate of 3.5 m3 s−1, attaining an efficiency of 80%. At optimal combustion, the carbon monoxide (CO) concentration generated in the drying air ranged from 25 to 42 ppm. The furnace's improved air-cooled grate solved the problem of pipe bending or melting during operation. The pipes in the grate reached a maximum temperature of 650 °C and did not bend or melt during operation. In addition to this, using a grate with the rotatable pipes, which allows for easy changing of the surface area that is directly in contact with the firing zone, can prolong it's the grate's lifespan, thus reducing maintenance costs. The ultimate result is a more efficient renewable energy solution for paddy drying.

Keywords: Rice husk; Bioenergy; Downdraft combustion; Energy efficiency; Grate; Furnace (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117308741
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:115:y:2018:i:c:p:969-977

DOI: 10.1016/j.renene.2017.09.012

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:969-977