An over-limit risk assessment of PV integrated power system using probabilistic load flow based on multi-time instant uncertainty modeling
B. Rajanarayan Prusty and
Debashisha Jena
Renewable Energy, 2018, vol. 116, issue PA, 367-383
Abstract:
In this paper, the risk assessment of a PV integrated power system is accomplished by computing the over-limit probabilities and the severities of events such as under-voltage, over-voltage, over-load, and thermal over-load. These aspects are computed by performing temperature-augmented probabilistic load flow (TPLF) using Monte Carlo simulation. For TPLF, the historical data for PV generation, ambient temperature, and load power, each collected at twelve specific time instants of a day for the past five years are pre-processed by using three linear regression models for accurate uncertainty modeling. For PV generation data, the developed model is capable of filtering out the annual predictable periodic variation (owing to positioning of the Sun) and decreasing production trend due to ageing effect whereas, for ambient temperature and load power, the corresponding models accurately remove the annual cyclic variations in the data and their growth. The simulations pertaining to the aforesaid risk assessment are performed on a PV integrated New England 39-bus test system. The system over-limit risk indices are calculated for different PV penetrations and input correlations. In addition, the changes in the values of TPLF model parameters on the statistics of the result variables are analyzed. The risk indices so obtained help in executing necessary steps to reduce system risks for reliable operation.
Keywords: Ambient temperature; PV generation; Risk assessment; Temperature-augmented probabilistic load flow (TPLF); Uncertainty modeling (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117309473
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:116:y:2018:i:pa:p:367-383
DOI: 10.1016/j.renene.2017.09.077
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().