Solar PV powered mixed-mode tunnel dryer for drying potato chips
Mohamed A. Eltawil,
Mostafa M. Azam and
Abdulrahman O. Alghannam
Renewable Energy, 2018, vol. 116, issue PA, 594-605
Abstract:
Solar PV system powered mixed-mode solar tunnel dryer (STD) for drying potato chips was studied. The STD was equipped with axial dc fan and flat plate solar air collector to enhance the thermal performance by maintaining a reasonable high temperature inside the drying chamber. The STD performance was evaluated without load and with load; and without and with using thermal curtain above potato slices during sunny days. Different airflow rates (2.1, 3.12 and 4.18 m3/min) and pre-treatments for potato slices were investigated. The PV powered STD exhibited the ability to produce chips with safe moisture level within 6 and 7 h for without and with using thermal curtain, respectively at airflow rate of 3.12 m3/min. The frying time of potato chips was shortened to be only 15 s. The best chips color was achieved with 1% sodium meta-bi-sulphite with using black thermal curtain above slices. Predicted and experimental moisture ratio of chips using developed STD were compared through several thin-layer drying models. The highest drying efficiency of 28.49 and 34.29% was recorded at airflow of 0.0786 kg/s in case of without and with using thermal curtain, respectively. The developed STD provides chips in good quality and suitable for rural areas.
Keywords: Drying efficiency; Drying tunnel; Modeling; Photovoltaic system; Potato chips; Solar air collector (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117309680
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:116:y:2018:i:pa:p:594-605
DOI: 10.1016/j.renene.2017.10.007
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().