EconPapers    
Economics at your fingertips  
 

Outdoor detection and visualization of hailstorm damages of photovoltaic plants

Wolfgang Muehleisen, Gabriele C. Eder, Yuliya Voronko, Markus Spielberger, Horst Sonnleitner, Karl Knoebl, Rita Ebner, Gusztav Ujvari and Christina Hirschl

Renewable Energy, 2018, vol. 118, issue C, 138-145

Abstract: Photovoltaic modules can experience damages of varying severity in the case of heavy hail storms. In the worst case, complete glass and solar cell breakage results in efficiency and security losses of the affected modules which therefore have to be replaced. However, there is a strong need to inspect the remaining modules directly in the field in order to assure no hidden damage. Three hail-affected photovoltaic plants in the south of Austria were investigated first with common standard methods like analysis of the plant monitoring data and thermography. Then, these plants were additionally investigated by novel non-destructive methods. With the aid of two innovative characterisation tools, outdoor electroluminescence and UV-fluorescence imaging, hail-induced damaging of solar cells can be detected even when the solar glass of the modules withstood the mechanical impact of the hailstorm and no damages are visible to the naked eye or well recognizable by thermography. The non-destructive, easy to handle and fast characterization technique UV-fluorescence imaging allows the detection and visualisation of hail induced cell damage. Modules showing partial cell breakage and/or micro cracks – as proven by outdoor electroluminescence measurements – and lead to a reduced electrical performance can be unequivocally identified.

Keywords: Crystalline silicon; PV modules; Hail damage; Characterisation (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117311114
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:118:y:2018:i:c:p:138-145

DOI: 10.1016/j.renene.2017.11.010

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:118:y:2018:i:c:p:138-145