Short term wind power forecasting using hybrid variational mode decomposition and multi-kernel regularized pseudo inverse neural network
Jyotirmayee Naik,
Sujit Dash,
P.K. Dash and
Ranjeeta Bisoi
Renewable Energy, 2018, vol. 118, issue C, 180-212
Abstract:
In this paper a new hybrid method combining variational mode decomposition (VMD) and single or Multi-kernel regularized pseudo inverse neural network (MKRPINN) is presented for effective and efficient wind power forecasting. The original non-linear and non-stationary time series data is decomposed using VMD approach to prevent the mutual effects among the different modes. The proposed VMD-KRPINN (VMD based kernel regularized pseudo inverse neural network) and VMD-MKRPINN methods are then used to predict wind power generation of a wind farm in the state of Wyoming, USA for different time intervals of 10 min, 30 min, 1 h and 3 h ahead. Comparison with empirical mode decomposition (EMD) based kernel regularized pseudo inverse neural networks is also presented in the paper to validate the superiority of the VMD based wind power prediction models. Also to improve the performance of the proposed EMD-MKPRINN and VMD-MKRPINN models, their parameters are optimized using vaporization and precipitation based water cycle algorithm (VAPWCA). Further a fast reduced version of the VMD-KRPINN is presented in the paper to reduce the execution time substantially using randomly selected support vectors from the data set while resulting in a reasonably accurate forecast.
Keywords: Wind power forecasting; Variational mode decomposition; Kernel method; Pseudo inverse neural network; Vaporization and precipitation based water cycle algorithm; Reduced kernel formulation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117310893
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:118:y:2018:i:c:p:180-212
DOI: 10.1016/j.renene.2017.10.111
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().