Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy
Tong Niu,
Jianzhou Wang,
Kequan Zhang and
Pei Du
Renewable Energy, 2018, vol. 118, issue C, 213-229
Abstract:
With the arrival of big data, data mining analysis and high-performance forecasting of wind speed is increasingly attracting close attention. Despite the fact that massive investigations concerning wind speed forecasting in theory and practice have been conducted by multiple researchers, studies concerning multi-step-ahead forecasting are still lacking, impeding the further development in the field. In this study, a novel hybrid approach is proposed for multi-step-ahead wind speed forecasting utilizing optimal feature selection and an artificial neural network optimized by a modified bat algorithm with cognition strategy. The proposed hybrid model can largely remedy the deficiencies of neural networks for multi-step-ahead forecasting, which is validated for different forecasting horizons, and is shown to work effectively. Finally, experiments based on three verification units from the city of Penglai in China are conducted effectively, illustrating that the proposed model not only has advantages when compared with benchmark models, but also has great potential for application to wind power system.
Keywords: Optimal feature selection; Modified bat algorithm; Artificial neural network; Multi-step-ahead wind speed forecasting (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117310364
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:118:y:2018:i:c:p:213-229
DOI: 10.1016/j.renene.2017.10.075
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().