Practical considerations for a simple ethanol concentration from a fermentation broth via a single adsorptive process using molecular-sieving carbon
Dong-June Seo,
Azusa Takenaka,
Hirotaka Fujita,
Kazuhiro Mochidzuki and
Akiyoshi Sakoda
Renewable Energy, 2018, vol. 118, issue C, 257-264
Abstract:
A simple ethanol concentration process composed of a simple adsorptive apparatus using a single adsorbent, i.e., molecular-sieving carbon (MSC), is proposed for small-scale bioethanol production. The process designed to comprise pre-concentration of ethanol through gaseous-phase adsorption onto MSC and selective dehydration driven by molecular-sieving during desorption was tested under various conditions. Among the candidate adsorbents, MSC 5A showed the highest maximum ethanol adsorption capacity (0.163 g g−1). It was confirmed that the adsorption temperature and the initial ethanol concentration in the broth are crucial factors for the adsorption stage. For the desorption stage, the water recovery temperature significantly affected the final ethanol concentration and the ethanol recovery. As a practical option for the application of the proposed system, sequential batch fermentation and ethanol recovery was successfully demonstrated.
Keywords: Ethanol; Molecular-sieving carbon; Adsorptive pre-concentration; Desorptive purification (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117311205
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:118:y:2018:i:c:p:257-264
DOI: 10.1016/j.renene.2017.11.019
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().