EconPapers    
Economics at your fingertips  
 

Nonlinear hydrodynamic effects on a generic spherical wave energy converter

Aidan Bharath, Jean-Roch Nader, Irene Penesis and Gregor Macfarlane

Renewable Energy, 2018, vol. 118, issue C, 56-70

Abstract: Analytical and numerical modelling techniques have been used extensively to predict the performance and power output of these devices using linear, inviscid and irrotational theory with the knowledge that nonlinear effects become relevant in extreme cases. This study applies Reynolds averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) model to simulate the diffraction and radiation problems for a single submerged spherical WEC operating in both heave and surge. Wave and device oscillation amplitudes from 30 mm to 60 mm and frequencies from 0.8 Hz to 1.2 Hz are employed to examine the fluid dynamics near the spherical WEC as the hydrodynamics deviate away from the linear regime. Results of the hydrodynamic coefficients from wave basin experiments are used to validate linear finite element and CFD models for small wave amplitudes. The nonlinear CFD model is then extended to model larger amplitudes. The hydrodynamic coefficients are here found to be amplitude dependent with free surface interactions being a key component of the deviation from linear theory. The rate of these deviations from low wave height, linear values via increasing wave heights is also found to vary with frequency. The outcomes highlight limitations in the linear approach and address the factors most important to WEC performance.

Keywords: Computational fluid dynamics; Volume of fluid; Submerged sphere; Wave energy converter (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811731039X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:118:y:2018:i:c:p:56-70

DOI: 10.1016/j.renene.2017.10.078

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:118:y:2018:i:c:p:56-70