EconPapers    
Economics at your fingertips  
 

Methanol synthesis from biogas: A thermodynamic analysis

A. Vita, C. Italiano, D. Previtali, C. Fabiano, A. Palella, F. Freni, G. Bozzano, L. Pino and Fabio Manenti ()

Renewable Energy, 2018, vol. 118, issue C, 673-684

Abstract: A new approach for the direct conversion of syngas into methanol has been proposed as alternative to the conventional process requiring WGS and/or PSA clean-up steps for syngas upgrading. A comparative thermodynamic equilibrium analysis of biogas reforming processes (dry reforming, steam reforming and oxy-steam reforming) has been performed using the Gibbs free energy minimization method. The calculations have been carried out under different biogas composition (CH4/CO2 = 1–2.3), reaction temperature (400–900 °C), S/CH4 (0.0–3.0) and O2/CH4 (0.0–0.2) molar ratios. The effects of process variables on the reforming performances as well as on the syngas quality, in term of CH4 and CO2 conversion, H2/CO and H2/CO2 ratios, coke deposition and energetic consumption, has been examined. Subsequently, methanol synthesis has been studied using the same mathematical approach, with the aim to identify the most adequate operating conditions for the direct conversion of the syngas obtained from reforming process into methanol. The simulations suggested that steam reforming of biogas, with high methane content, is the most appropriate route to produce a syngas quality suitable for the new proposed approach.

Keywords: Methanol synthesis; Biogas; Reforming processes; Thermodynamic analysis; PRO∖II process simulator; Gibbs free energy minimization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117311230
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:118:y:2018:i:c:p:673-684

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2019-10-04
Handle: RePEc:eee:renene:v:118:y:2018:i:c:p:673-684