EconPapers    
Economics at your fingertips  
 

Sustainability assessment of synfuels from biomass or coal: An insight on the economic and ecological burdens

Shiying Yang, Yucheng Yang, Ranjith Kumar Kankala and Baoxia Li

Renewable Energy, 2018, vol. 118, issue C, 870-878

Abstract: Biomass-to-Liquid (BTL) and Coal-to-Liquid (CTL) Synfuels have been the two most significant alternatives for the transportation liquid fuels. But their performance in resource depletion, economic investment, and environmental impacts differs greatly from the conventional refinery. For comparing the strengths and the weakness of each alternative, a quantitative trade-off procedure is required. However, a few researches have discussed such trade-off procedures. In this paper, the life cycle inventories, production cost, and Ecological Cumulative Exergy Consumption (ECEC) of BTL and CTL in China are investigated to compare the pros and cons of each Synfuel. Herewith, the ECEC is taken as a metric for the ecological burden, providing a significant way to integrate the life cycle resource, economic, and environmental factors of Synfuels for the sustainability assessments. The results demonstrated that the shifting of petroleum to BTL reduced the CO2 emission by 98% but relatively increased the water consumption and wastewater. The production cost-breakeven crude oil price with BTL is about 98 $/bbl without considering the taxes, and it could be decreased to 50 $/bbl according to China's tax policy. More importantly, BTL could cut as high as 65% of the overall ecological burden so that would be much more beneficial to the sustainable development of the fuel industry. On the other hand, the economic effectiveness of CTL is relatively reliable, where its production cost-breakeven crude oil price is below 70 $/bbl. However, 10.7 t of CO2 are created for each tonne of CTL, which is 3.3 times to conventional petroleum, and three times of water is consumed in the whole. The ECEC analysis also indicates that the shifting of crude oil to coal for transportation fuels will almost double the overall ecological burden and pose threats to the safety and sustainability of the entire fuel industry at which the cautions should be paid.

Keywords: Sustainability; Biomass-to-Liquid fuel; Coal-to-Liquid fuel; Production cost; Ecological Cumulative Exergy Consumption (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117311746
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:118:y:2018:i:c:p:870-878

DOI: 10.1016/j.renene.2017.11.073

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:118:y:2018:i:c:p:870-878