EconPapers    
Economics at your fingertips  
 

Effect of wavelength and amplitude on the performance of wavy finned absorber solar air heater

Abhishek Priyam and Prabha Chand

Renewable Energy, 2018, vol. 119, issue C, 690-702

Abstract: A theoretical study for computing the effects of amplitude and wavelength of the wavy fin on the thermal performance of a single pass flat plate solar air heater is presented. A C++ program code with an iterative solution procedure has been developed to solve the governing energy equations and to evaluate the mean temperatures of the collector. The effect of mass flow rate, amplitude and wavelength variation of the wavy fin on the thermal and thermohydraulic performance of present solar air heater was investigated. For the entire range of mass flow and a constant value of amp = 0.75 cm, thermal and thermohydraulic efficiency decreases with increase in wavelength. Also, for constant value of wavelength = 7 cm, thermal efficiency increases with increase in amplitude whereas thermohydraulic efficiency increases up to the mass flow rate of 0.06 kg/s, beyond that thermohydraulic efficiency decreases. A comparison for the results of the present model is done with the plane solar air heater as well as the experimental results available in the literature. The results show a great enhancement in the thermal and thermohydraulic performance with the modified solar air heater.

Keywords: Wavelength; Amplitude; Wavy fin; Solar air heater; Thermal efficiency; Thermohydraulic efficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117312065
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:119:y:2018:i:c:p:690-702

DOI: 10.1016/j.renene.2017.12.010

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:119:y:2018:i:c:p:690-702