EconPapers    
Economics at your fingertips  
 

Analysis of initial stabilization of cell efficiency in amorphous silicon photovoltaic modules under real outdoor conditions

C. Mateo, M.A. Hernández-Fenollosa, Á. Montero and S. Seguí-Chilet

Renewable Energy, 2018, vol. 120, issue C, 114-125

Abstract: This contribution presents a field study in which the initial stabilization of thin-film amorphous silicon (a-Si:H) is investigated. Two grid-connected a-Si:H photovoltaic plants have been monitored and analyzed under real outdoor conditions. A per-unit approach is proposed to compare PV plants with differences in their electrical characteristic and the start-up date. The representation of a normalized per-unit PV power versus the accumulated incoming irradiation reveals an evolution that can be characterized through an exposure-response function. By this function, two populations of defects in the cells are detected. It is found that the stabilization process in the first year of operation produces a decrease of 10% in the peak power, equivalent to a decrease of 0.5% in cell efficiency. The use of the accumulated PSH for conducting the analysis of the initial stabilization produces similarities that cannot be obtained if a time scale is used. These results provide a powerful tool for PV plant designers because they enable a prediction to be made of the time-scale stabilization response in terms of unitary power, correlated with the peak sun hours received.

Keywords: Long-term PV measures; Staebler-Wronski effect; a-Si:H stabilization; Real outdoor conditions; Light induced degradation effect (LID) (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117312582
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:120:y:2018:i:c:p:114-125

DOI: 10.1016/j.renene.2017.12.054

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:120:y:2018:i:c:p:114-125