LES-based numerical prediction of the trailing edge noise in a small wind turbine airfoil at different angles of attack
I. Solís-Gallego,
A. Meana-Fernández,
J.M. Fernández Oro,
K.M. Argüelles Díaz and
S. Velarde-Suárez
Renewable Energy, 2018, vol. 120, issue C, 241-254
Abstract:
In this paper, the aerodynamic field around a FX 63–137 airfoil for four angles of attack and low Reynolds numbers was simulated with a Large Eddy Simulation (LES). Following, an acoustic analogy method was employed to calculate the airfoil trailing edge (TE) noise. In this second scheme step, the far-field acoustic pressure was predicted from the LES source terms using two different methods based on Lighthill's analogy: Curle's surface approach and Ffowcs-Williams and Hall's volumetric analogy (FW-Hall). Numerical results have been validated with hot-wire anemometry for the aerodynamic fields, thus verifying the accuracy of the CFD simulation for the prediction of noise propagation to the far field. Additionally, aeroacoustic results were validated with experimental measurements carried out in an anechoic wind tunnel using a frequency analyzer. The FW-Hall formulation shows a better agreement with the experiments, especially in the range of frequencies corresponding to the trailing edge, whereas Curle's analogy overpredicts airfoil sound. An exhaustive analysis of the aerodynamic flow field has been performed in order to better understand the generation mechanisms of the TE noise. The aeroacoustic calculations presented in this work contribute to develop a more reliable and efficient prediction methodology based on the Computational Aeroacoustics Approach (CAA).
Keywords: LES; Wind turbine airfoil; Trailing edge noise; Low Mach number; Acoustic analogy (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117312909
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:120:y:2018:i:c:p:241-254
DOI: 10.1016/j.renene.2017.12.082
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().