Robust fault estimation for wind turbine energy via hybrid systems
Sarah Odofin,
Edward Bentley and
Daniel Aikhuele
Renewable Energy, 2018, vol. 120, issue C, 289-299
Abstract:
The rapid development of modern wind turbine technology has led to increasing demand for improving system reliability and practical concern for robust fault monitoring scheme. This paper presents the investigation of a 5 MW Dynamic Wind Turbine Energy System that was designed to sustain condition monitoring and fault diagnosis with the goal of improving the reliability operations of universal practical control systems. A hybrid stochastic technique is proposed based on an augmented observer combined with eigenstructure assignment for the parameterisation and the genetic algorithm (GA) optimisation to address the attenuation of uncertainty mostly generated by disturbances. Scenarios-based are employed to explore sensor and actuator faults that have direct and indirect impacts on modern wind turbine system, based on monitoring components that are prone to malfunction. The analysis is aimed to determine the effect of concerned simulated faults from uncertainty in respect to environmental disturbances mostly challenged in real-world operations. The efficiency of the proposed approach will improve the reliability performance of wind turbine system states and diagnose uncertain faults simultaneously. The simulation outcomes illustrate the robustness of the dynamic turbine systems with a diagnostic performance to advance the practical solutions for improving reliable systems.
Keywords: Fault estimation; Wind turbine; Eigenstructure; Genetic algorithms; Optimisation; Augmented robust observers (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117312351
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:120:y:2018:i:c:p:289-299
DOI: 10.1016/j.renene.2017.12.031
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().