Energy and economic losses caused by dust on residential photovoltaic (PV) systems deployed in different climate areas
Julius Tanesab,
David Parlevliet,
Jonathan Whale and
Tania Urmee
Renewable Energy, 2018, vol. 120, issue C, 401-412
Abstract:
Results of the study revealed that when dust impinged on the surface of the PV modules, monthly maximum power output of a 1.5 kWp system in Perth, Australia and a 50 Wp system in Nusa Tenggara Timur (NTT), Indonesia decreased, on average, by about 4.5% and 8%, respectively. Economic modelling showed that, the cost of production per kWh lost due to dust exhibited by these systems were A$ 0.26/kWh and A$ 0.15/kWh, respectively. Comparison of the cost of energy losses and maintenance revealed that, the Perth system would require manual cleaning in October while the system in NTT would require cleaning in August and October. Although the saving in production losses is not economically significant, this cleaning schedule was recommended, particularly for small systems in NTT since the extra output can have a significant effect on the quality of life in remote villages. The key finding was that higher dust de-rating factors and more cleaning activity may be more appropriate for PV systems deployed in tropical climate areas than that in temperate climate regions. It is recommended that PV system Standards that use the 5% performance de-rating factor due to soiling are reviewed and consideration given to climate-dependent de-rating factors.
Keywords: Dust; PV performance; Economic losses; Maintenance cost; Solar home systems (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117312806
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:120:y:2018:i:c:p:401-412
DOI: 10.1016/j.renene.2017.12.076
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().