EconPapers    
Economics at your fingertips  
 

Conversion of atmospheric variations into electric power – Design and analysis of an electric power generator system

S. Ganesh, G. Ali, D. Moline, T. Schweisinger and J. Wagner

Renewable Energy, 2018, vol. 120, issue C, 478-487

Abstract: Given its abundant availability, ambient thermal energy harvesting has the potential to power standalone microelectronic systems. The challenge in efficiently harvesting temperature and pressure variations is the low thermal to electric conversion ability of current harvesters. Most thermal harvesters require high temperature gradients. This paper presents the design, analysis, and implementation of an energy harvesting system that effectively harnesses naturally occurring temperature variations using ethyl chloride filled mechanical bellows. A mechanical drivetrain scales the bellows displacement and a coil spring stores the potential energy. This energy is periodically released and converted into useable electric power by a DC generator. A series of mathematical models are developed and accompanying numerical analyses completed on the harvester system. For a low frequency sinusoidal temperature cycle of ±1 °C about 22 °C, 9.6 mW of electrical power was produced using a 1.5 V micro DC generator for a 24 h harvesting period. The power generation capacity of the proposed harvester is sufficient to indefinitely operate low power sensors and microelectronics in environments with small temperature gradients.

Keywords: Atmospheric variations; Thermal energy harvesting; Energy storage (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117312867
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:120:y:2018:i:c:p:478-487

DOI: 10.1016/j.renene.2017.12.080

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:120:y:2018:i:c:p:478-487