Optimization of adsorption isotherm types for desiccant air-conditioning applications
Muhammad Sultan,
Takahiko Miyazaki and
Shigeru Koyama
Renewable Energy, 2018, vol. 121, issue C, 441-450
Abstract:
The present study investigates five kinds of adsorbents for desiccant air-conditioning (DAC) applications. Each adsorbent yield distinctive water vapor adsorption isotherm that can be categorized as type-I, type-II, type-III, type-V, and type-linear on the basis of the International Union of Pure and Applied Chemistry (IUPAC) classification. Ideal DAC cycle is evaluated for the air-conditioning (AC) applications, and steady-state moisture cycled (MCSS) is estimated by means of adsorption isobars. Results showed that the adsorbent enabling type-linear adsorption isotherm gives maximum MCSS for industrial AC processes of matches manufacturing/drying/storage, rubber dipped goods storage and photo studio drying room. However, adsorbent enabling type-V adsorption isotherm is found the optimum adsorbent for tobacco stemming/stripping/softening and optical lenses grinding. For industrial AC process of dipped surgical articles; adsorbents enabling type-II, type-linear, and type-I adsorption isotherms are found the optimum choice at low (<68 °C), medium (68°C-87 °C), and high (>87 °C) regeneration temperatures, respectively.
Keywords: Adsorption isotherms; Desiccants; Air-conditioning; Applications; Optimization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118300454
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:121:y:2018:i:c:p:441-450
DOI: 10.1016/j.renene.2018.01.045
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().