Investigation of peak wind loads on tandem heliostats in stow position
Matthew J. Emes,
Farzin Ghanadi,
Maziar Arjomandi and
Richard M. Kelso
Renewable Energy, 2018, vol. 121, issue C, 548-558
Abstract:
This paper investigates the effects of turbulence in the atmospheric boundary layer (ABL) on the peak wind loads on heliostats in stow position in isolation and in tandem configurations with respect to the critical scaling parameters of the heliostats. The heliostats were exposed to a part-depth ABL in a wind tunnel using two configurations of spires and roughness elements to generate a range of turbulence intensities and integral length scales. Force measurements on different-sized heliostat mirrors at a range of heights found that both peak lift and hinge moments were reduced by up to 30% on the second tandem heliostat when the spacing between the heliostat mirrors was close to the mirror chord length and converged to the isolated heliostat values when the spacing was greater than 5 times the chord length. Peak wind loads on the tandem heliostat were above those on an isolated heliostat for an integral-length-scale-to-chord-length ratio Lux/c of less than 5, whereas tandem loads were 30% lower than an isolated heliostat at Lux/c of 10. The reduced loads on the tandem heliostat corresponded to a shift to higher frequencies of the fluctuating pressure spectra, due to the break-up of large eddies by the upstream heliostat.
Keywords: Stowed heliostat; Wind load; Atmospheric boundary layer; Gap ratio (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118300909
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:121:y:2018:i:c:p:548-558
DOI: 10.1016/j.renene.2018.01.080
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().