EconPapers    
Economics at your fingertips  
 

Fast hydrogen generation from solid NH3BH3 under moderate heating and supplying a limited quantity of CoCl2 or NiCl2 solution

A.M. Gorlova, N.L. Kayl, O.V. Komova, O.V. Netskina, A.M. Ozerova, G.V. Odegova, O.A. Bulavchenko, A.V. Ishchenko and V.I. Simagina

Renewable Energy, 2018, vol. 121, issue C, 722-729

Abstract: New results of an investigation of NH3BH3 dehydrogenation with supplying a limited quantity of aqueous solution of a catalyst precursor to a solid-state bed of the hydride particles with subsequent external heating at 40–90 °C are presented. Measurements of the reaction layer temperature and the amount of the evolved hydrogen have shown that at external heating temperature higher than 85°С there was acceleration of the first stage of the process, the highly exothermic catalytic hydrolysis of a portion of ammonia borane, which resulted in a stronger heating of the reaction layer and the start of NH3BH3 thermolysis. This type of process is referred to as hydrothermolysis. A TEM, ATR FTIR, and XRD investigation has shown that in the reaction medium the metal chlorides become reduced to an amorphous catalytically active phase. During this process, ammonia reacts with chlorides to form NH4Cl. All of this leads to increased rate of hydrogen generation and hydrogen yield. Gravimetric hydrogen capacity of 7.6 wt% and the average rate of H2 evolution of 39 ml·gcomp.−1min−1 have been achieved at molar ratios of NH3BH3/MCl2 = 50 (M = Co, Ni) and H2O/NH3BH3 = 2 and at external heating of 85°С.

Keywords: Ammonia borane; Hydrolysis; Thermolysis; Hydrothermolysis; Hydrogen production; Catalyst (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118300995
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:121:y:2018:i:c:p:722-729

DOI: 10.1016/j.renene.2018.01.089

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:121:y:2018:i:c:p:722-729