EconPapers    
Economics at your fingertips  
 

Study of Jatropha curcas shell bio-oil-diesel blend in VCR CI engine using RSM

Himanshu Patel, Vikram Rajai, Prasanta Das, Samir Charola, Anurag Mudgal and Subarna Maiti

Renewable Energy, 2018, vol. 122, issue C, 310-322

Abstract: Jatropha curcas shell was slow pyrolyzed in pilot-scale fixed bed reactor at 500 °C. Fuel properties of moisture free bio-oil (MFBO) and diesel were compared, which advocated MFBO's applicability in CI engines. Negligible corrosion effect of MFBO was experienced for SS-316 and anodized Al, whereas significant corrosiveness was observed towards Cu. For all three metals, diesel was found to be less corrosive. MFBO was mixed with diesel in proportions of 4%, 8%, 12% and 16% (% v/v) and operating variables of single cylinder VCR engine were optimized using response surface methodology (RSM) with the blends. A central composite design (CCD) was employed to examine the effects of three independent variables - CR, load and blend %, whereas the investigated response variables were brake thermal efficiency (ηBth), brake specific fuel consumption (bsfc), unburnt hydrocarbon (UHC), CO, and CO2. The obtained data were analyzed with the help of Design Expert software. Response prediction was accomplished by following a second-degree polynomial model. The optimum conditions were CR 18.00, load 6.665 kg, and blend 12.22%. Under optimum conditions, the experimental values of response variables were fairly comparable with the model predicted values. The designed model achieved overall desirability of 0.786.

Keywords: Jatropha shell; Slow pyrolysis; Bio-oil; CI engine; Response surface methodology; Engine parameters optimization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118300818
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:122:y:2018:i:c:p:310-322

DOI: 10.1016/j.renene.2018.01.071

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:122:y:2018:i:c:p:310-322