Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids
Hüseyin Kaya,
Kamil Arslan and
Nurettin Eltugral
Renewable Energy, 2018, vol. 122, issue C, 329-338
Abstract:
In this paper, the efficiency of an evacuated U-tube solar collector (EUSC) with ZnO/Etylene Glycol-Pure Water (ZnO/EG-PW) as a working fluid was experimentally investigated. 50%–50% EG-PW was used as a base fluid. To prepare the nanofluids ZnO nanoparticles were added to the EG-PW base fluid at different volume concentrations (1.0%, 2.0%, 3.0% and 4.0%). The maximum collector efficiency was obtained at equal working fluid inlet temperature and ambient temperature in all experiments. Moreover, the highest collector efficiency was determined 62.87% for 3.0 vol.% and mass flow rate of 0.045 kg/s that it was 26.42% higher than EG-PW as a working fluid. Also, this value is 5.2% and 6.88% higher than the base fluid for the mass flow rates of 0.03 and 0.02 kg/s, respectively. It was determined also that the thermal conductivity of ZnO/EG-PW nanofluid increases with increasing nanoparticle volume concentration.
Keywords: Evacuated solar collector; U-tube; Thermal performance; Nanofluid; ZnO (Zinc oxide) (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118301253
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:122:y:2018:i:c:p:329-338
DOI: 10.1016/j.renene.2018.01.115
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().