EconPapers    
Economics at your fingertips  
 

Temporal downscaling of test reference years: Effects on the long-term evaluation of photovoltaic systems

Ignacio García and José Luis Torres

Renewable Energy, 2018, vol. 122, issue C, 392-405

Abstract: Representative meteorological data from a given location are necessary to assess the long-term performance of photovoltaic (PV) systems. Test reference years (TRYs) or typical meteorological years (TMYs) are widely used as input to PV models. Most of current procedures propose the construction of TRYs by concatenating 12 months belonging to different years of a dataset. This paper evaluates the effects of the temporal downscaling of typical periods that compose different TRYs on the long-term assessment of PV systems. The Festa-Ratto TRY, WYSS, EN ISO 15927-4 TRY, TMY3, TGY and TDY are used. Thus, an adapted version of these six methodologies aimed at the selection of typical days rather than months is proposed. The electricity production obtained by simulation for daily and monthly TRYs is compared with simulations performed for each actual year of the dataset. This analysis is performed for seven locations in the USA considering a 5.6 kWp grid-connected PV system. The results reveal that the timescale reduction improves the behavior of Festa-Ratto TRY, WYSS, TMY3, TDY and TDY when estimating the long-term production of a PV system considering the hourly, daily, monthly and annual timescales, while the modified EN ISO 15927-4 TRY performs worse than its monthly version.

Keywords: Test reference year; Temporal downscaling; PV systems (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118301186
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:122:y:2018:i:c:p:392-405

DOI: 10.1016/j.renene.2018.01.108

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:122:y:2018:i:c:p:392-405