EconPapers    
Economics at your fingertips  
 

Solar evaporation via nanofluids: A comparative study

Aimen Zeiny, Haichuan Jin, Guiping Lin, Pengxiang Song and Dongsheng Wen

Renewable Energy, 2018, vol. 122, issue C, 443-454

Abstract: Vaporisation (evaporation and boiling) through direct absorption solar collectors (DASCs) has recently drawn significant attention. Many studies suggested that plasmonic nanoparticles, such as gold nanoparticles, can significantly enhance the photo-thermal conversion efficiency of DASCs. However, there is still a lack of comparative studies of the feasibility of using gold nanoparticles for solar applications. This study performed well-controlled experiments for two different categorised particles, i.e., gold and carbon black suspended in water, and assessed their performance in terms of evaporation rate, materials cost and energy consumption. The results show that gold nanofluids are not feasible for solar evaporation applications, where the cost of producing 1 g/s vapour is ∼300 folds higher than that produced by carbon black nanofluids. This infeasibility is mainly due to the high cost and the low absorbance of gold comparing to carbon black nanoparticles. Moreover, this work reveals that with the increase of nanoparticle concentration or incident solar radiation, more energy is trapped in a small volume of the nanofluid near the interface, resulting in a local higher temperature and a higher evaporation rate. For efficient steam production, future optimisation of the system should consider concentrating more solar energy at the interface to maximize the energy consumed for evaporation.

Keywords: Direct absorption; Nanofluid; Solar energy; Solar evaporation; Economic analysis (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118300430
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:122:y:2018:i:c:p:443-454

DOI: 10.1016/j.renene.2018.01.043

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:122:y:2018:i:c:p:443-454