A hybrid algorithm based optimization on modeling of grid independent biodiesel-based hybrid solar/wind systems
Du Guangqian,
Kaveh Bekhrad,
Pouria Azarikhah and
Akbar Maleki
Renewable Energy, 2018, vol. 122, issue C, 551-560
Abstract:
The main contribution of this research is formulating the size optimization of grid-independent hybrid wind/photovoltaic/biodiesel/battery systems and proposing a hybrid algorithm on this optimization problem. There are many investigations based on hybrid wind and PV power systems but the investigation on the hybrid wind/photovoltaic/biodiesel/battery system is rarely found. Here, the optimal design of a biodiesel/wind/photovoltaic/battery energy system for a stand-alone application in Iran is studied. The objective of the optimum design problem is to minimize the life cycle cost of the wind/photovoltaic/biodiesel/battery system subject to some constraints by adjusting four decision variables, namely, number of batteries, photovoltaic area, the swept area of wind turbines, and fuel consumption of the biodiesel generator. To solve the optimization problem, initially, we investigate the performance of two popular metaheuristic algorithms, namely, harmony search and simulated annealing. Moreover, this article proposes a hybrid harmony search-simulated annealing method that combines the advantages of each one of the above-mentioned metaheuristic algorithms. Simulation results show that the proposed hybrid harmony search-simulated annealing improves the obtained solutions, in terms of quality, compared to the solutions provided by individual harmony search or individual simulated annealing algorithms. Moreover, the hybrid photovoltaic/biodiesel/battery system is the best choice to supply the electrical load.
Keywords: Grid independent hybrid systems; Life cycle cost; Renewable fraction; Biodiesel; Hybrid harmony search and simulated annealing algorithm (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118301642
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:122:y:2018:i:c:p:551-560
DOI: 10.1016/j.renene.2018.02.021
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().