EconPapers    
Economics at your fingertips  
 

A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts

Hugo T.C. Pedro, Edwin Lim and Carlos F.M. Coimbra

Renewable Energy, 2018, vol. 123, issue C, 513-525

Abstract: This paper presents a simple forecasting database infrastructure implemented using the open-source database management system MySQL. This proposal aims at advancing the myriad of solar and wind forecast models present in the literature into a production stage. The paper gives all relevant details necessary to implement a MySQL infra-structure that collects the raw data, filters unrealistic values, classifies the data, and produces forecasts automatically and without the assistance of any other computational tools. The performance of this methodology is demonstrated by creating intra-hour power output forecasts for a 1 MW photovoltaic installation in Southern California and a 10 MW wind power plant in Central California. Several machine learning forecast models are implemented (persistence, auto-regressive and nearest neighbors) and tested. Both point forecasts and prediction intervals are generated with this methodology. Quantitative and qualitative analyses of solar and wind power forecasts were performed for an extended testing period (4 years and 6 years, respectively). Results show an acceptable and robust performance for the proposed forecasts.

Keywords: Renewable generation forecast; Real-time implementation; Nearest neighbors forecast (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118301873
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:123:y:2018:i:c:p:513-525

DOI: 10.1016/j.renene.2018.02.043

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:123:y:2018:i:c:p:513-525