Multi-objective optimization of simultaneous saccharification and fermentation for cellulosic ethanol production
Jalil Shadbahr,
Yan Zhang,
Faisal Khan and
Kelly Hawboldt
Renewable Energy, 2018, vol. 125, issue C, 100-107
Abstract:
A multi-objective optimization of simultaneous saccharification and fermentation process for cellulosic ethanol production was carried out to simultaneously maximize the ethanol yield/cellulose conversion and minimize the enzyme consumption by manipulating the initial sugar concentrations, and cellulose and enzyme loadings. The study was based on an experimentally verified kinetic model. Several bi-objective optimization problems with different combinations of objectives and constraints were solved by a controlled elitist genetic algorithm, a variant of the non-dominated sorting genetic algorithm II (NSGA-II). The optimum operating conditions were verified by experiments. There was significant performance improvement in terms of ethanol yield, cellulose conversion and enzyme loading. An overall 40% reduction of enzyme consumption per ethanol produced was attained at the same ethanol yield (32%) of a non-optimized process. However, the optimum conditions are highly sensitive to the selected kinetic model and associated kinetic parameters therefore, selection of the appropriate kinetic model is critical.
Keywords: Simultaneous saccharification and fermentation; Cellulose; Bioethanol; Multi-objective optimization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118302581
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:125:y:2018:i:c:p:100-107
DOI: 10.1016/j.renene.2018.02.106
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().