EconPapers    
Economics at your fingertips  
 

Effect of percussion vibration on solidification of supercooled salt hydrate PCM in thermal storage unit

Guobing Zhou, Maochuan Zhu and Yutong Xiang

Renewable Energy, 2018, vol. 126, issue C, 537-544

Abstract: Experiments are performed on the effect of percussion vibration on triggering solidification of supercooled sodium acetate (CH3COONa) salt solution in the rounded - rectangular thermal storage unit. To provide quantitative analysis, the steel ball freely falling down to the surface of PCM (phase change material) unit is applied for percussion vibration with parameters of percussion number and crystallization induction time. Factors such as the steel ball diameter and falling height, as well as the percussion position on the PCM unit are examined about their effects on the crystallization induction. The results show that it is favorable to activate solidification of supercooled sodium acetate solution with larger percussion momentum (larger ball diameter and higher falling height), percussion near the cover lid and edges of unit. A term named percussion effectiveness is also introduced for evaluation of percussion effect on solidification activation. The results in this paper are useful for seasonal thermal storage of solar energy within supercooled inorganic PCMs and control of discharging the stored energy for space heating.

Keywords: Percussion vibration; Solidification; Latent heat thermal storage; Supercooled salt hydrate; Phase change material; Experiment (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118303884
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:126:y:2018:i:c:p:537-544

DOI: 10.1016/j.renene.2018.03.077

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:126:y:2018:i:c:p:537-544