A comparative investigation on in-situ and laboratory standard test of the potential induced degradation of crystalline silicon photovoltaic modules
M.A. Islam,
M. Hasanuzzaman and
Nasrudin Abd Rahim
Renewable Energy, 2018, vol. 127, issue C, 102-113
Abstract:
Potential induced degradation (PID) is one of the genuinely critical concerns of a sustainable power generation from a PV system. Generally, the PID behavior of a PV module is tested in the laboratory according to the IEC standard before installation into a plant. On the other hand, an electroluminescence imaging is a reliable technique to identify the different types of PV cell defects which cause the degradation of the PV modules. The aim of this research is to investigate the PID behavior of similar PV modules in both the real on-site test and the laboratory standard test conditions. This will facilitate the outcome of the tangible indoor PID test results with more ease and reliability. It has been observed from the EL images of the on-site degraded PV module that a performance degradation happens due to different types of PV cell defects, such as, localized shunting, cracks, front contact grid interruptions, etc. The maximum power versus EL mean intensity shows a linear relationship which predicts the quantitative performance analysis of a PV module from an EL imaging process. The PID of a PV module has been found in a negative voltage stress condition in both the on-site and the laboratory tests. The shunt resistance gradually decreases as a consequence of the negative voltage stress only. The on-site degradation levels of the Pmax, Voc, Isc, and FF are 46.5, 7.15, 30.4, and 17.35% respectively after a duration of nearly 11 years of a negative voltage stress generated from a 240 V string size. In a laboratory PID test, the Pmax, Voc, Isc, and FF are degraded due to a negative voltage stress with a value of 6.83%, 1.9%, 1.5%, and 3.5% respectively.
Keywords: PV module; Potential induced degradation (PID); On-site PID test; Laboratory PID test; EL imaging; Maximum power; Shunt resistance; Nomenclature (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118304592
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:127:y:2018:i:c:p:102-113
DOI: 10.1016/j.renene.2018.04.051
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().