Simple index for onsite operation management of ground source heat pump systems in cooling-dominant regions
Sayaka Kindaichi and
Daisaku Nishina
Renewable Energy, 2018, vol. 127, issue C, 182-194
Abstract:
In ground source heat pump (GSHP) systems, large imbalances between cooling and heating loads cause a rise or decline in ground temperature because of thermal interference between multiple ground heat exchangers (GHEs). To evaluate annual changes in ground temperature, we applied a variable temperature penalty, which was simply obtained using measured data without computer simulation. First, we examined measured data for 3 years after completion of a hybrid GSHP system that had 70 borehole-type GHEs, combined with an air source heat pump unit. In the hybrid system, the GSHP showed high efficiency (coefficient of performance > 5.0) throughout the year and had a variable contribution between years with regard to cooling/heating output and time of operation. The amount of heat rejected to the ground by cooling reached ∼4.8 times that of heat extracted from the ground by heating after 3 years of operation. This imbalance produced ground temperature increases of ∼3 °C in an internal borehole. The variable temperature penalty reproduced the measured temperature increase, suggesting that the index is appropriate for assessing long-term ground temperature changes in the operation phase. This simple index allows operational improvement onsite and will aid the sustainable operation of GSHP systems in cooling-dominant regions.
Keywords: Ground source heat pump systems; Cooling-dominant regions; Borehole-type ground heat exchangers; Operational management; Variable temperature penalty (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118304737
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:127:y:2018:i:c:p:182-194
DOI: 10.1016/j.renene.2018.04.065
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().