The future of wind energy in California: Future projections with the Variable-Resolution CESM
Meina Wang,
Paul Ullrich and
Dev Millstein
Renewable Energy, 2018, vol. 127, issue C, 242-257
Abstract:
Shifting wind patterns are an expected consequence of global climate change, with direct implications for wind energy production. However, wind is notoriously difficult to predict, and significant uncertainty remains in our understanding of climate change impacts on existing wind generation capacity. In this study, historical and future wind climatology and associated capacity factors at five wind turbine sites in California are examined. Historical (1980–2000) and mid-century (2030–2050) simulations were produced using the Variable-Resolution Community Earth System Model (VR-CESM) to understand how these wind generation sites are expected to be impacted by climate change. A high-resolution statistically downscaled WRF product provided by DNV GL, reanalysis datasets MERRA-2, CFSR, NARR, and observational data were used for model validation and comparison. These projections suggest that wind power generation capacity throughout the state is expected to increase during the summer, and decrease during fall and winter, based on significant changes at several wind farm sites. This study improves the characterization of uncertainty around the magnitude and variability in space and time of California's wind resources in the near future, and also enhances our understanding of the physical mechanisms related to the trends in wind resource variability.
Keywords: Wind energy; Climate change; Variable-resolution climate modeling; California (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118304397
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:127:y:2018:i:c:p:242-257
DOI: 10.1016/j.renene.2018.04.031
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().